Two-Dimensional NMR Studies of Staphylococcal Nuclease: Evidence for Conformational Heterogeneity from Hydrogen-1, Carbon-13, and Nitrogen-15 Spin System Assignments of the Aromatic Amino Acids in the Nuclease H124L-Thymidine 3',5'-Bisphosphate-Ca²⁺ Ternary Complex[†]

Jinfeng Wang, Andrew P. Hinck, Stewart N. Loh, and John L. Markley*

Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin—Madison, 420 Henry Mall, Madison, Wisconsin 53706

Received November 15, 1989; Revised Manuscript Received January 9, 1990

ABSTRACT: A combination of multinuclear two-dimensional NMR experiments served to identify and assign the combined ¹H, ¹³C, and ¹⁵N spin systems of the single tryptophan, three phenylalanines, three histidines, and seven tyrosines of staphylococcal nuclease H124L in its ternary complex with calcium and thymidine 3',5'-bisphosphate at pH 5.1 (H₂O) or pH* 5.5 (²H₂O). Samples of recombinant nuclease were labeled with ¹³C or ¹⁵N as appropriate to individual NMR experiments: uniformly with ¹⁵N (all sites to >95%), uniformly with ¹³C (all sites to 26%), selectively with ¹³C (single amino acids uniformly labeled to 26%), or selectively with ¹⁵N (single amino acids uniformly labeled to >95%). NMR data used in the analysis included single-bond and multiple-bond ¹H-¹³C and multiple-bond ¹H-¹⁵N correlations, ¹H-¹³C single-bond correlation with Hartmann-Hahn relay (1H{13C|SBC-HH), and 1H-13C single-bond correlation with NOE relay (1Hf13C|SBC-NOE). The aromatic protons of the spin systems were identified from 1Hf13C|SBC-HH data, and the nonprotonated aromatic ring carbons were identified from ¹H-¹³C multiple-bond correlations. Sequence-specific assignments were made on the basis of observed NOE relay connectivities between assigned $^{1}H^{\alpha}-^{13}C^{\alpha}$ or $^{1}H^{\beta}-^{13}C^{\beta}$ direct cross peaks in the aliphatic region [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) *Biochemistry 29*, 88-101] and $^{1}H^{\delta}-^{13}C^{\delta}$ direct cross peaks in the aromatic region of the $^{1}H^{\{13}C\}SBC-NOE$ spectrum. The His 121 $^{1}H^{\delta_{2}}$ resonance, which has an unusual upfield shift (at 4.3 ppm in the aliphatic region), was assigned from ¹H{¹³C}SBC, ¹H{¹³C}MBC, and ¹H{¹⁵N}MBC data. Evidence for local structural heterogeneity in the ternary complex was provided by doubled peaks assigned to His⁴⁶, one tyrosine, and one phenylalanine. Measurement of NOE buildup rates between protons on different aromatic residues of the major ternary complex species yielded a number of interproton distances that could be compared with those from X-ray structures of the wild-type nuclease ternary complex with calcium and thymidine 3',5'-bisphosphate [Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555; Loll, P. J., & Lattman, E. E. (1989) Proteins: Struct., Funct., Genet. 5, 183-201]. The unusual chemical shift of His¹²¹ ¹H^{δ₂} is consistent with ring current calculations from either X-ray structure.

The V8 variant of Staphylococcus aureus produces a nuclease (nuclease H124L)¹ that contains 14 aromatic amino acid residues: one tryptophan, three phenylalanines, seven tyrosines, and three histidines (Taniuchi et al., 1967). The aromatic residues of this nuclease and that from the Foggi variant (nuclease wt),² which differs from the V8 variant by substitution of histidine for leucine at position 124 (Cusumano et al., 1968), have been the object of NMR investigation since the mid 1960s. Signals from the tyrosines and tryptophan were identified initially by selective deuteration of the aromatic amino acid residues (Markley et al., 1968). Signals from

tyrosines 85, 113, and 115 were assigned tentatively on the basis of selective nitration experiments (Cohen et al., 1971). Recent developments in two-dimensional NMR methodology have permitted extensive sequence-specific NMR assignments in staphylococcal nucleases (Torchia et al., 1989a; Wang et al., 1990a,b).

¹H NMR signals from the ¹H⁶ atoms of the His rings were observed first at 100 MHz (Meadows et al., 1967). The initial assignments of the His ¹H^{e₁} signals (Jardetzky et al., 1972) were confirmed by mutagenesis studies (Alexandrescu et al., 1988). Interest in the histidines has revived recently. Doubling of the His ¹H NMR signals (Markley et al., 1970) provides a means of studying equilibria that link multiple conformational substates of the enzyme (Fox et al., 1986; Evans et al., 1987, 1989; Alexandrescu et al., 1988, 1989; Alexandrescu, 1989). Separate His resonances are found for two monomeric forms and a dimeric form of the enzyme. The structural heterogeneity that gives rise to the two monomer peaks has been attributed to cis/trans isomerism of the Lys¹¹⁶-Pro¹¹⁷ peptide bond (Evans et al., 1987). This heterogeneity is decreased upon formation of the nuclease-Ca2+-pdTp ternary complex. X-ray structures of the ternary complex show the Lys¹¹⁶-Pro¹¹⁷ peptide bond to be cis (Cotton et al., 1979; Loll & Lattman, 1989), and this result has been confirmed for the

[†]Supported by Grant GM35976 from the National Institutes of Health and by a NEDO grant from the Japanese Government. This study made use of the National Magnetic Resonance Facility at Madison, which is supported in part by NIH Grant RR02301 from the Biomedical Research Technology Program, Division of Research Resources. Equipment in the facility was purchased with funds from the University of Wisconsin, the NSF Biological Biomedical Research Technology Program (DMB-8415048), the NIH Biomedical Research Technology Program (RR02301), the NIH Shared Instrumentation Program (RR02781), and the U.S. Department of Agriculture.

[‡]Trainee supported by a Training Grant in Biophysics (NIH GM08293).

[§] Trainee supported by a Training Grant in Cellular and Molecular Biology (NIH GM07215).

ternary complex in solution (Torchia et al., 1989b). Stanczyk et al. (1988) have reported that the His¹²¹ ¹Hδ₂ resonance of nuclease wt is split as the consequence of local conformational heterogeneity that is not removed upon formation of the ternary complex.

This paper, which is the third in a series (Wang et al., 1990a,b) on the ¹H, ¹³C, and ¹⁵N NMR assignments and solution structure of staphylococcal nuclease H124L, presents complete assignments of the aromatic ¹H, ¹³C, and ¹⁵N spin systems of the nuclease H124L-Ca²⁺-pdTp ternary complex at pH 5.1 (for soltuions in H₂O) or pH* 5.5 (for solutions in ²H₂O).³ In making these assignments, we employed, in addition to nuclease H124L samples used previously that were at natural abundance or labeled uniformly with ¹³C and ¹⁵N (Wang et al., 1990b), nuclease H124L samples that were labeled selectively with [26% U-13C]-L-Tyr, [26% U-13C]-L-Phe, [26% U-13C]-L-His, or [95% U-15N]-L-His. In the course of this work, we found an unusual chemical shift for the His¹²¹ ¹H^{b₂} (slightly upfield of the water resonance at 4.3 ppm in the aliphatic region). The chemical shift of this proton had been reported earlier at 6.3 ppm (Stanczyk et al., 1988). Both the crystal (Cotton et al., 1979; Loll & Lattman, 1989) and solution structural results place the His¹²¹ ¹H^{δ2} adjacent to the middle of the aromatic ring of Tyr91. The chemical shift of 4.3 ppm is in agreement with ring-current calculations from X-ray coordinates (Cotton et al., 1979; Loll & Lattman, 1989). We have discovered the presence of conformational heterogeneity within the ternary complex as reported by doubling of ¹H, ¹³C, and ¹⁵N resonances assigned to His⁴⁶.

EXPERIMENTAL PROCEDURES

Protein Samples. Nine solutions of the ternary complex were studied, each of which provided a different pattern of stable isotope labeling: (1) [na]H124L-TC in 100% ²H₂O containing 3.5 mM protein, 10.5 mM dpTp, 21 mM CaCl₂, and 0.3 M KCl at pH* 5.5; (2) [95% U-15N]H124L-TC in 100% ²H₂O containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH* 5.5; (3) [95% U-¹⁵N]H124L-TC in 90% H₂O/10% ²H₂O containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH 5.1; (4) [95% U-15N] His-H124L-TC in 100% ²H₂O containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH* 5.5; (5) $[95\% \text{ U}^{-15}\text{N}]\text{His-H}124\text{L-TC}$ in $90\% \text{ H}_2\text{O}/10\% \text{ }^2\text{H}_2\text{O}$ containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH 5.1; (6) [26% U-13C]H124L-TC in 100% ²H₂O containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH* 5.5; (7) [26% U-13C]Tyr-H124L-TC in 100% ²H₂O containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH* 5.5; (8) [26% U-13C]Phe-H124L-TC in 100% ²H₂O containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH* 5.5; (9) [26% U-13C]His-H124L-TC in 100% ²H₂O containing 5 mM protein, 15 mM pdTp, 30 mM CaCl₂, and 0.3 M KCl at pH* 5.5.

Methods described previously were used to prepare nuclease samples labeled with ¹³C and ¹⁵N (Wang et al., 1990b), to isolate and purify the protein samples (Alexandrescu et al., 1988), and to prepare the ternary complexes (Wang et al., 1990a). Uniformly ¹³C-labeled amino acids were prepared as described by Grissom and Markley (1989). The sample of [95% U-¹⁵N]His used to make the selectively labeled nuclease was a generous gift from M. Kainosho (Tokyo Metropolitan University).

NMR Spectroscopy. Homonuclear and heteronuclear two-dimensional ${}^{1}H\{{}^{1}H\}$, ${}^{1}H\{{}^{13}C\}$, and ${}^{1}H\{{}^{15}N\}$ NMR data were collected on a Bruker AM 500 or AM 600 spectrometer at a temperature setting of 45 °C. As in the previous studies (Wang et al., 1990a,b), ${}^{1}H$, ${}^{13}C$, and ${}^{15}N$ chemical shifts are quoted relative to those of internal TSP, external 10% dioxane in ${}^{2}H_{2}O$ (at an assumed chemical shift of 67.8 ppm relative to that of TMS), or 95% (${}^{15}NH_{4}$)₂SO₄ in 90% ${}^{12}O/10\%$ ${}^{2}H_{2}O$ (at an assumed chemical shift of 21.6 ppm relative to that of liquid ammonia), respectively.

Two-dimensional ¹H{¹H} phase-sensitive DQF-COSY, HOHAHA, and NOESY spectra were acquired with [na]-H124L-TC samples. ¹³C- or ¹⁵N-labeled H124L-TC samples were used in acquiring 2D ¹H-detected heteronuclear correlated spectra. The ¹H{¹³C} data sets were collected for the aromatic region alone, but the ¹H{¹³C}SBC-NOE data covered both the aromatic and aliphatic regions. The ¹H{¹⁵N} data were acquired for the His region only. The NMR methodology and experimental parameters were as described in detail in the previous papers (Wang et al., 1990a,b). The figure legends describe essential features pertaining to the 2D NMR spectra shown.

Interproton Distance Calculations. NOESY data for the nuclease ternary complex were obtained at three mixing times (τ_c = 100, 150, and 200 ms). Intensities of cross peaks in the aromatic region were measured, and interproton distances were calculated from the NOE buildup rates as described by Fejzo et al. (1989). In making these calculations, a uniform correlation time was assumed to hold for all NOEs. A correlation time of 7 ns was determined experimentally by fitting the NOE buildup rates between pairs of protons separated by known distances: the intraresidue NOEs between $^1\text{H}^\delta$ and $^1\text{H}^\dagger$ of Phe 76 (distance = 4.3 Å) and the intraresidue NOEs between

¹ Abbreviations: 2D, two dimensional; DQF-COSY, two-dimensional double quantum filtered phase-sensitive homonuclear correlated spectroscopy; HOHAHA, two-dimensional Hartmann-Hahn magnetization transfer spectroscopy; NOE, nuclear Overhauser enhancement; NOESY, two-dimensional dipolar correlated spectroscopy; NM, native (folded form of nuclease); U, unfolded form of nuclease; BC, nuclease Ca2+ binary complex; TC, nuclease pdTp · Ca2+ ternary complex; a1, subconformation of nuclease whose relative abundance increases upon pdTp-Ca²⁺ binding; a2, subconformation of nuclease whose relative abundance decreases upon pdTp·Ca²⁺ binding; b1 and b2, subconformations of nuclease identified by doubling of the His⁴⁶ ¹H⁴¹ resonance (in nuclease H124L at pH 5.5 and 318 K, b1 is defined as the form giving rise to the higher intensity and higher field His46 1He1 signal, and b2 is defined as the form giving rise to the smaller intensity and lower field His⁴⁶ ¹H⁴¹ signal); Phe? (F?) and Tyr? (Y?), unassigned extra spin systems from phenylalanine and tyrosine, respectively; Hisu or U, signal from histidine in unfolded (denanatured or degraded) protein; nuclease H124L, mutant of the nuclease from Staphylococcus aureus (Foggi strain) (EC 3.14.7) in which the histidine at residue 124 has been replaced with leucine; [na]H124L-TC, ternary complex prepared with natural abundance (unlabeled) nuclease H124L; [26% U-13C]H124L-TC, ternary complex made with nuclease enriched uniformly with ¹³C to 26% isotope; [95% U-15N]H124L-TC, ternary complex made with nuclease enriched uniformly with ¹⁵N to >95% isotope; [26% U-¹³C]Phe-H124L-TC, ternary complex made with nuclease that contains phenylalanine enriched uniformly with ¹³C to 26% isotope; [26% U-¹³C]Tyr-H124L-TC, ternary complex made with nuclease that contains tyrosine enriched uniformly with ¹³C to 26% isotope; [26% U-¹³C]His-H124L-TC, ternary complex made with nuclease that contains histidine enriched uniformly with 13C to 26% isotope; [95% U-15N] His-H124L-TC, ternary complex made with nuclease that contains histidine enriched uniformly with 15N to >95% isotope; pdTp, thymidine 3',5'-bisphosphate; TSP, 3-(trimethylsilyl)[2H4] propionate; pH*, uncorrected pH meter reading of a 2H2O solution with a glass electrode standardized with H₂O buffers. Crosspeak positions in spectra are given as X,Y ppm, where X is the horizontal axis and Y is the vertical axis.

² By general usage, the nuclease from the Foggi strain of *Staphylococcus aureus* is defined at the wild-type enzyme. Nuclease H124L technically is the wild-type nuclease from the V8 strain of *Staphylococcus aureus*.

³ The exact number of calcium ions bound in the ternary complex (one or two) is controversial (Tucker et al., 1979).

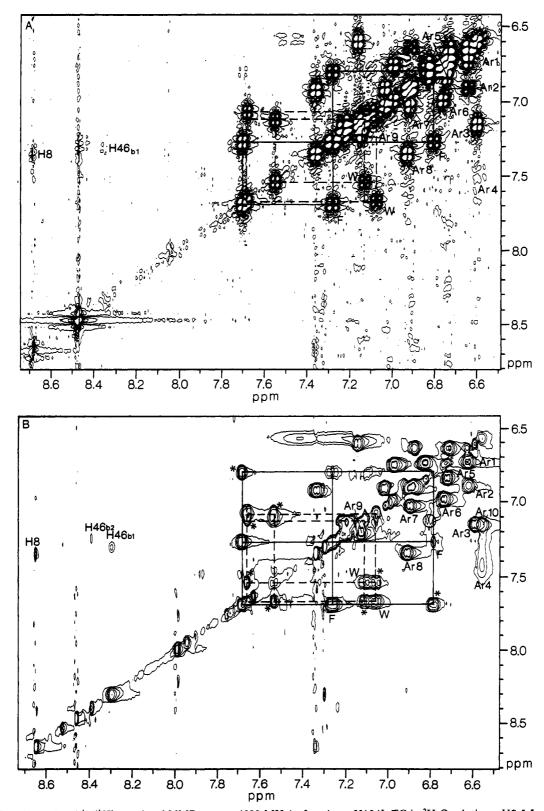


FIGURE 1: Two-dimensional ¹H{¹H} correlated NMR spectra (500 MHz) of nuclease H124L TC in ²H₂O solution, pH* 5.5. (A) Aromatic region of the phase-sensitive DQF-COSY spectrum collected over a 6500-Hz spectral width with 512 increments and 128 averaged FIDs for each t₁ value. Shifted sine bell window functions were used in both dimensions for resolution enhancement. Double zero-filling was used to extend the t₁ dimension to 2048 points prior to Fourier transformation. Both positive and negative contour levels are shown in this presentation. (B) Aromatic region of the HOHAHA spectrum collected as 512 increments with a mixing time of 55 ms and with 136 averaged FIDs per t₁ value. Other spectral parameters were as given above for the COSY experiment. Relayed cross peaks are denoted by asterisks. The spin system of the Trp residue is indicated by dashed lines and those of Phe residues are indicated by continuous lines. Cross peaks from His are labeled by the one-letter amino acid code and residue number; other cross peaks are labeled with "Ar" followed by an arbitrary number.

 ${}^{1}H^{6}$ and ${}^{1}H^{6}$ of Tyr²⁷, Tyr⁸⁵, and Tyr¹¹³ (distance = 2.5 Å). Experimental distances were determined by measuring cross-peak intensities as a function of mixing time, normalizing

these against the intensities of corresponding diagonal peaks, and using the results to generate the NOE buildup curve. An initial rate approximation was used to calculate the distances.

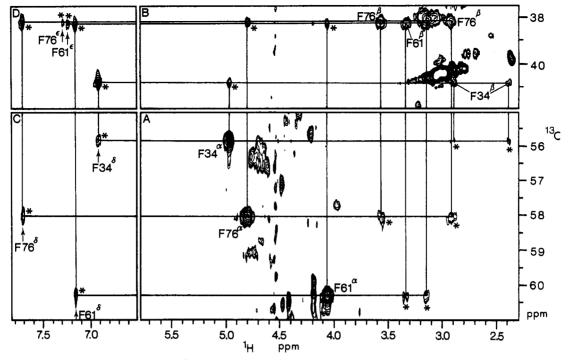


FIGURE 2: Four parts of the two-dimensional ¹H(¹³C)SBC-NOE spectrum (500 MHz) of [26% U-¹³C]Phe-H124L-TC in ²H₂O, pH* 5.5. The spectral range covered only the aliphatic region. 340 increments were collected with 304 averaged FIDs per t1 value. The mixing time used for the NOE buildup was 250 ms. Shifted sine bell filtering was used in t_1 , and a Gaussian function was used in t_2 . Zero-filling to 2048 points was applied in the t_1 dimension. The NOE relay cross peaks are indicated by asterisks. Single-bond correlation cross peaks are labeled by the one-letter amino acid code and residue number. (A) Region containing Phe ${}^{1}H^{\alpha_{-1}3}C^{\alpha}$ direct cross peaks and ${}^{1}H^{\beta_{-1}3}C^{\alpha}$ NOE relay cross peaks. (B) Region containing Phe ${}^{1}H^{\beta_{-1}3}C^{\beta}$ direct cross peaks. (C) Region containing Phe ${}^{1}H^{\beta_{-1}3}C^{\alpha}$ NOE relay cross peaks. (D) Region containing Phe ${}^{1}H^{\beta_{-1}3}C^{\beta}$ NOE relay cross peaks.

Ring-Current Calculations. Ring-current calculations according to the current-loop model of Johnson and Bovey (1958) were carried out by use of the FORTRAN program RCUR4 adapted from Perkins (1982) to run on a Silicon Graphics Iris 4D/220GTX workstation (A. M. Krezel and C. L. Kojiro, unpublished data). Input data for the ring-current calculations were derived by adding hydrogens to the heavy atom coor-

The standard deviation of the fit was on the order of 10-20%.

dinates obtained from the Protein Data Bank with the MOLEDIT routine of the INSIGHT software package (Biosym Technologies, Inc.). The FORTRAN program DIST2 (A. M. Krezel, unpublished data) was used to extract interproton distances from the structure.

RESULTS

Assignment Strategy. Aromatic amino acid residue assignments are based, most commonly, on the separate identification of the aromatic and aliphatic components of each spin system followed by their linkage on the basis of intraresidue NOEs between aromatic ${}^{1}H^{\delta}$ and aliphatic ${}^{1}H^{\alpha}$ and ${}^{1}H^{\beta,\beta'}$ protons. According to the amino acid composition of nuclease H124L, one expects to find a maximum of 19 cross peaks in the aromatic region of the COSY map. Twelve strong and several weak cross peaks were observed in the DQF-COSY spectrum collected in ²H₂O (Figure 1A). The spin systems of the single tryptophan and one phenylalanine were identified readily by comparison of DQF-COSY and HOHAHA (²H₂O) data (Figure 1, solid and dashed lines, respectively, for Phe and Trp). However, spectral ambiguities interfered with further spin system identifications. In order to obtain rigorous assignments, it was necessary to make use of uniform and selective ¹³C and ¹⁵N labeling in conjunction with multinuclear 2D NMR spectroscopy. The present assignments relied heavily on ¹H-detected, ¹³C- or ¹⁵N-correlated, 2D NMR experiments (Markley, 1989).

The sequence-specific backbone assignments established in the previous papers (Wang et al., 1990a,b) included those from all aromatic residues. The ${}^{1}H^{\alpha}$ assignments of the aromatic residues provided starting points for the full assignments of their spin systems. ¹H{¹³C}SBC and ¹H{¹³C}SBC-HH data were used to elucidate the aromatic and aliphatic portions of the proton and carbon spin systems. ¹H₁¹³C₁SBC-HH spectroscopy of the aromatic region was of particular importance in identifying the ring proton spin systems of each aromatic residue. The ¹H{¹³C}SBC-HH experiment as tailored for the aromatic region provided a reliable approach for distinguishing Tyr and Phe spin systems. Intraresidue NOEs between ${}^{1}H^{\alpha,\beta}$ and ¹H^{δ,ε} provided the links between the aliphatic and aromatic portions of the spin systems of each amino acid. ¹H{¹³C}-SBC-NOE spectroscopy proved essential for site-specific assignments of aromatic ring proton and carbon resonances. Multiple-bond ¹H-¹³C correlations were used to assign quaternary carbon resonances. Single-bond and multiple-bond ¹H-¹⁵N correlations were used to assign nitrogen resonances. All of the assignments are summarized in Table I.

Assignment of the Aliphatic AMX Proton Spin Systems and Their Associated Carbon Spin Systems. The ${}^{1}H^{\alpha}-{}^{13}C^{\alpha}$ direct cross peaks of Tyr and Phe, respectively, were identified in ¹H(¹³C)SBC spectra of [26% U-¹³C]Tyr-H124L-TC or [26% U-13C]Phe-H124L-TC. Further comparison of these spectra with ¹H₁¹³C₁SBC-NOE spectra of the same selectively labeled complexes allowed us to assign ¹H^{\beta_{-13}}C^{\beta} direct cross peaks for each aromatic residue. Figure 2 shows the ¹H{¹³C}SBC-NOE spectrum of [26% U-13C]Phe-H124L-TC. The pairs of ${}^{1}H^{\beta,\beta'}_{-13}C^{\alpha}$ NOE relay cross peaks in the region 2.30–3.70,55.5–60.5 ppm (Figure 2A) and the three ${}^{1}H^{\alpha}-{}^{13}C^{\beta}$ NOE relay cross peaks in the region 4.0-5.10,38.0-41.0 ppm (Figure 2B) established connectivities between the ${}^{1}H^{\alpha}_{-}$ ${}^{13}C^{\alpha}$ and ${}^{1}H^{\beta}-{}^{13}C^{\beta}$ direct cross peaks.

By selective labeling of the tyrosines so as to eliminate

	Trp ¹⁴⁰	4.91	2.83	3.71	7.00			7 66	3	7.54	7.06	53.5	28.5	7.60	26.4	27.2		138.4	9.611	113.2	22.4		
	His ¹²¹ 1	5.47	2.35	3.28		4.32	8.01							130.8		117.8		1	-			213.39	70:07
	His ⁴⁶ b1	4.89	3.12	3.17		7.31	8.31					52.8	29.0	132.1		118.6	136.1						8.
5 °C"	His ⁴⁶ _{b2}					7.26	8.40							130.4		118.5	135.5					193.47	74.69
plex at 4	Hisu					7.30	8.53										135.1					182.78	/4.67
ary Com	His	5.04	3.26	3.33		7.35	8.66					53.4	29.5	129.7		118.7	135.1					179.60	/4.40
24L Tern	Phe 76	4.77	2.92	3.55	7.69	7.69	7.27	17.1	6.79			58.0	38.2	138.4	131.2	131.2	129.6	129.6	127.3				
ease H12	Phe?				7.23	7.23	7.34	1.34	7.28					137.3	130.4	130.4	129.9	129.9	128.4				
ccal Nucl	Phe ⁶¹	4.05	3.14	3.33	7.13	7.13	7.21	17.7	7.19			60.3	38.3	136.2	130.8	130.8	129.1	129.1	128.3				
aphyloco	Phe ³⁴	4.94	2.37	2.89	68.9	6.89	6.91	0.91	6.64			55.8	8.04	138.6	129.7	129.7	129.7	129.7	128.2				
of the St	Tyr115	5.03	3.00	3.11	7.15	7.15	9.90	0.00				53.3	36.8	129.4	132.1	132.1	115.8	115.8	155.3				
Residues	Tyr113	3.44	2.57	2.97	96.9	86.9	6.74	0./4				55.9		130.3	131.1	131.1	116.3	116.3	155.9				
no Acid	Tyr93	5.11	2.37	2.84	6.63	6.63	6.73	6.73				54.7	36.2	130.5	131.0	131.0	116.4	116.4	156.5				
atic Ami	Tyr?				7.13	7.13	6.81	0.81						129.3	131.7	131.7		116.6	155.6				
Table I: Resonance Assignments for the Aromatic Amino Acid Residues of the Staphylococcal Nuclease H124L Ternary Complex at 45 °Ca	Tyr91	4.63	3.40		7.15/ 7.46 ^b	7.15/	6.58	0.38				56.2	36.2				116.6/	116.6/					
ments fo	Tyr ⁸⁵	4.65	2.88	3.39	7.02	7.02	6.91	9.9 -				55.9	36.7	129.9	131.1	131.1	6.911	116.9	156.2				
ce Assign	Tyr ⁵⁴	4.39	3.18		6.82	6.82	6.73	0./3				54.7	37.1	128.7	130.9	130.9	116.8	116.8	155.7				
Resonan	Tyr27	5.06	3.01	3.19	7.34	7.34	6.92	76.0				55.2	40.2	127.4	132.2	132.2	116.7	116.7	156.7				
Table I:	į	ıΗα	°H	Ť	Į. H	ųΗ _ι	ž	; : :	ΞĦ	QH,	žį	ي	13Cg	<u>ئ</u>	<u>ئ</u> <u>ء</u>	ئ ر 13	13 13 13	13 Ca	ರ್ಷ 2	చ్చ చ్ర జ	Ç	15 N 15 15 15	; Z

^{a 13}C and ¹⁵N data were collected at pH* 5.5 in ²H*O solution. The ¹³C* and ¹³C* chemical shift values were taken from ¹H{¹³C|SBC-NOE data; chemical shifts of most protons were taken from ¹H{¹⁵N}MBC data. ^bThe Tyr⁹¹ ring, which flips slowly on the NMR time scale, has separate signals for atoms on either side of the ring.

Table II: Distances between Pairs of Aromatic Ring Hydrogens That Show Interresidue NOE Connectivities in Two-Dimensional NOESY Spectra of the Nuclease H124L Ternary Complex at pH* 5.5

	MR	solution	ork	3	2.7		ς;		3.6		
distances (Å)		,	'				•				
	X-ray crystal	Loll and	(6861)	5.0	2.7	3.9	4.2	4.2	4.3	2.7	4.2
	X-ray	Cotton et	al. (1979)	4.3	7.1	9.3	5.9	8.1	5.9	7.3	0.6
			atom	Į.	. 2	φ'	مدا	مد	62	¢ ₂	δ ₂
		pairs"	residue	Tyr ²⁷	Phe ³⁴		Phc34		Phc ³⁴		
		hydrogen pairs ^a	atom	9-	مد	٠.	Ţ	· ζ	ָרָ י	£2	62
			residue	Phe76	Phe^{76}		Phe 76		Phe^{76}		
	NMR	solution	work	3.9				4.0		3.4	
distances (A)	X-ray crystal	Loll and Lattman	(1989)	3.5	4.3	0.9	8.2	4.3	3.4	3.5	3.4
	X-ray	Cotton et	al. (1979)	5.3	2.3	8.7	4.5	4.6	2.1	4.0	2.1
			atom	- - -	£2	ξ1	· 5	هٔ ا	δ	Ę	62
		ıydrogen pairs ^a	residue	Tyr115				Tyr^{27}		Tyr^{27}	
		hydroge	atom	δ_2	δ ₂	٥	۰ م	مد	٠.	Ę.	ſ,
			residue	Tyr113				Phe ³⁴		Phe^{76}	

^o Because of rapid ring flips, the chemical shifts of the δ₁ and δ₂ ring protons and ϵ₁ and ϵ₂ rings protons are averaged. Thus, one cannot distinguish one side of the ring from the other by NMR. ^b The NMR distances are probably accurate to within ±1 Å. ^c The chemical shifts of Phe³⁴ 1H^{h₁λ2} and ¹H^{c₁λ2} and ¹H^{c₁λ2} are very similar.

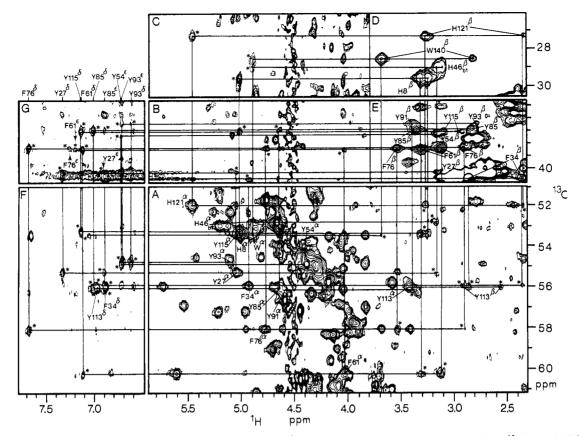
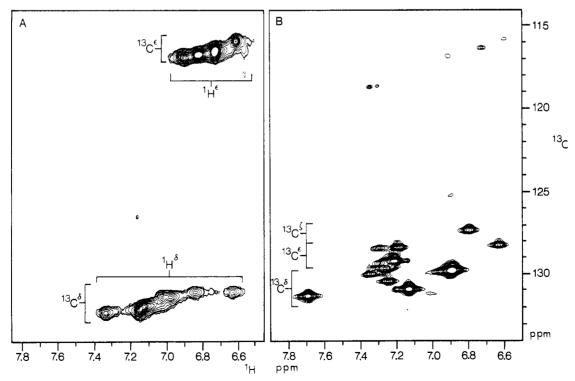
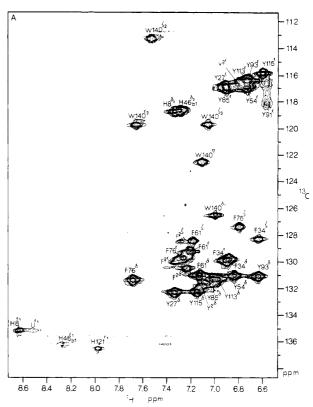


FIGURE 3: Combined presentation of ¹H{¹³C|SBC (600 MHz) and ¹H{¹³C|SBC-NOE (500 MHz) spectra of [26% U-¹³C]H124L-TC in ²H₂O. The ¹H{¹³C|SBC spectrum consisted of 512 blocks recorded with 96 averaged FIDs per t₁ value. The ¹H{¹³C|SBC-NOE spectrum consisted of 460-blocks recorded with 160 averaged FIDs per t₁ value; the mixing time for NOE buildup was 250 ms. Additional spectral parameters of 400-blocks recorded with 100 averaged FIDs per I_1 value; the mixing time for NOE buildup was 250 ms. Additional spectral parameters and data processing procedures were as described above (Figure 2). Single-bond correlation cross peaks are labeled by the one-letter amino acid code and residue number; NOE relay cross peaks are indicated by asterisks. (A) Region containing ${}^{1}H^{\alpha_{-1}3}C^{\alpha}$ direct cross peaks and ${}^{1}H^{\beta_{-1}3}C^{\alpha}$ NOE relay cross peaks of aromatic amino acid residues. (B and C) Region containing ${}^{1}H^{\alpha_{-1}3}C^{\beta}$ NOE relay cross peaks. (D and E) Region containing ${}^{1}H^{\beta_{-1}3}C^{\beta}$ direct cross peaks of ${}^{1}H\{{}^{13}C\}SBC$ spectrum. (F) Region containing ${}^{1}H^{\delta,\epsilon_{-1}3}C^{\alpha}$ NOE relay cross peaks. (G) Region containing ${}^{1}H^{\delta_{-1}3}C^{\beta}$ NOE relay cross peaks.




FIGURE 4: Aromatic region of 500-MHz ${}^{1}H_{1}^{13}C_{1}^{13}SBC$ spectra of (A) [26% U- ${}^{13}C_{1}^{13}$ Tyr-H124L-TC recorded as 176 blocks with 256 averaged FIDs per t_{1} value and (B) [26% U- ${}^{13}C_{1}^{13}$ Phe-H124L-TC in ${}^{2}H_{2}$ O recorded as 248 blocks with 132 averaged FIDs per t_{1} value. Other spectral parameters and data processing procedures were as described above (Figure 2). Regions containing direct cross peaks from Tyr ¹H^{δ,ε}₋₁3C^{δ,ε} and Phe ¹H^{δ,ε,ξ}₋₁3C^{δ,ε,ξ} are indicated.

interfering cross peaks from other aromatics in the ¹H₁¹³C₁SBC spectrum, the ${}^{1}H^{\alpha}-{}^{13}C^{\alpha}$ direct cross peak of Tyr⁵⁴, whose fingerprint region ¹H^{\alpha}-¹H^N cross peak was not identified previously (Wang et al., 1990a), was assigned at 4.39,54.7 ppm. NOE relay cross peaks were identified (Figure 3B) that connect ${}^{1}H^{\alpha}-{}^{13}C^{\alpha}$ and ${}^{1}H^{\beta}-{}^{13}C^{\beta}$ direct cross peaks from Tyr²⁷, Tyr85, and Tyr115; these included an NOE relay cross peak at 3.19,55.2 ppm (Figure 3A), which provided further support for the Tyr²⁷ spin system assignment. The Tyr⁹¹ $^{1}H^{\alpha}-^{13}C^{\alpha}$ direct cross peak was linked to the ${}^{1}H^{\beta}-{}^{13}C^{\beta}$ direct cross peak of the same residue through an NOE relay cross peak at 3.40,56.2 ppm. This NOE cross peak overlaps a direct cross peak from Tyr113 plus that from another residue. The ${}^{1}H^{\beta,\beta}-{}^{13}C^{\beta}$ direct cross peaks of Tyr¹¹³ are not shown in Figure 3E; however, their positions are indicated by a pair of NOE relay cross peaks at (2.57,2.97),55.9 ppm in Figure 3A. Although no NOE relay cross peaks were observed for Tyr⁵⁴ and Tyr⁹³ in Figure 3A,B, NOE relay cross peaks (Figure 3F,G) from Tyr⁹³ ${}^{1}H^{\delta,\epsilon-13}C^{\alpha,\beta}$ and from Tyr⁵⁴ ${}^{1}H^{\epsilon-13}C^{\alpha,\beta}$ could be used to link the ${}^{1}H^{\alpha}-{}^{13}C^{\alpha}$ and ${}^{1}H^{\beta}-{}^{13}C^{\beta}$ direct cross peaks as indicated by the solid lines.

The aliphatic proton AMX spin systems of the His and Trp residues were assigned through comparisons of ${}^{1}H\{^{13}C\}SBC$ and ${}^{1}H\{^{13}C\}SBC$ -NOE spectra of [26% U- ${}^{13}C]H124L$ -TC in ${}^{2}H_{2}O$. The ${}^{1}H\beta^{-13}C\beta$ direct cross peak pairs from His 8 , His 46 , His 121 , and Trp 140 in the ${}^{1}H\{^{13}C\}SBC$ spectrum (Figure 3D) were assigned on the basis of NOE connectivities (Figure 3C) to the ${}^{1}H\alpha^{-13}C\alpha$ direct cross peaks (Figure 3A) of these residues. The ${}^{1}H\beta^{-13}C\alpha$ NOE relay cross peaks in the 2.30–3.80,51.0–54.0 ppm region of Figure 3A provided further support for these assignments and extended them to the ${}^{1}H\beta^{-13}C\beta$ direct cross peaks as is indicated in Figure 3E.

Identification and Assignment of Aromatic Portions of the Spin Systems. The use of selectively labeled samples, [26%] U-13C]Tyr-H124L-TC, [26% U-13C]Phe-H124L-TC, or [26% U-13C]His-H124L-TC, facilitated the identification of the spin systems of these residues. The aromatic spin systems of Tyr and Phe were identified by comparing ¹H₁¹³C₁SBC and ¹H-{\langle SBC-HH data recorded selectively for the aromatic region so as to increase spectral resolution. Figure 4A shows the direct cross peaks of the Tyr rings. The ¹H^δ-1³C^δ cross peaks are centered in the 6.60-7.40,130.0-133.0 ppm region, whereas the 1H-13C+ cross peaks are located in the 6.50-7.0,115.0-117.0 ppm region. In the ${}^{1}H\{{}^{13}C\}SBC-NOE$ spectrum, the Tyr aromatic connectivity pattern forms a rectangle with the ¹H^δ-13C^δ and ¹H^ε-13C^ε direct cross peaks at two diagonally opposite corners and the ${}^{1}H^{\delta-13}C^{\epsilon}$ and ${}^{1}H^{\epsilon-13}C^{\delta}$ NOE relayed cross peaks at the two other corners. Seven such rectangular connectivity patterns were observed (solid lines in Figure 5B). The one labeled "Y?" (Figure 5) has chemical shifts of ${}^{1}H^{\delta} = 7.13$ ppm and ${}^{1}H^{\epsilon} = 6.81$ ppm that correspond to those of a cross peak in the HOHAHA (²H₂O) spectrum (circled peak in Figure 1B).

All the direct cross peaks of the phenylalanines are concentrated in the 6.60-7.80,127.0-132.0 ppm region (Figure 4B). The 13 C chemical shifts of the Phe 1 H $^{\delta}-^{13}$ C $^{\delta}$, 1 H $^{\epsilon}-^{13}$ C $^{\epsilon}$, and 1 H $^{\epsilon}-^{13}$ C $^{\epsilon}$ direct cross peaks are located respectively around 130.4, 129.9, and 128.3 ppm. The aromatic connectivity pattern for Phe forms two rectangles with a single common corner located at the position of the 1 H $^{\epsilon}-^{13}$ C $^{\epsilon}$ direct cross peak. The corners diagonally opposite this common corner correspond to 1 H $^{\delta}-^{13}$ C $^{\delta}$ and 1 H $^{\epsilon}-^{13}$ C $^{\epsilon}$ direct cross peaks. Four Phe aromatic connectivity patterns were found in Figure 5B as indicated by dashed lines. One of these spin systems, that with 1 H $^{\delta}=7.23$ ppm, 1 H $^{\epsilon}=7.34$ ppm, and 1 H $^{\epsilon}=7.28$ ppm, was not observed in the aromatic regions of the DQF-COSY

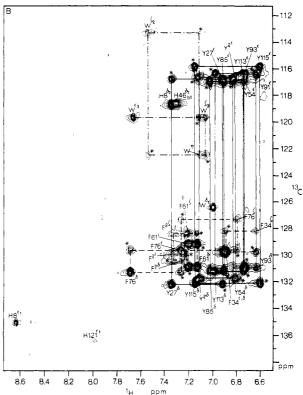


FIGURE 5: Two-dimensional NMR spectra (600 MHz) of [26% U- 13 C]H124L-TC in 2 H₂O, pH* 5.5. (A) 1 H{ 13 C]SBC spectrum recorded as 512 blocks with 44 averaged FIDs per t_1 value. (B) 1 H{ 13 C]SBC-HH spectrum recroded as 512 blocks with 48 averaged FIDs per t_1 value and a 30-ms spin-lock mixing time. Data processing parameters were identical with those given above. Direct cross peaks are labeled by the one-letter amino acid code and residue number; Hartmann-Hahn relay cross peaks are indicated by asterisks. The letter U stands for histidine of unfolded or degraded protein.

(Figure 1A) or HOHAHA (Figure 1B) spectra.

The connectivity pattern for the single Trp was determined by comparing the aromatic regions of the ¹H{¹³C}SBC (Figure

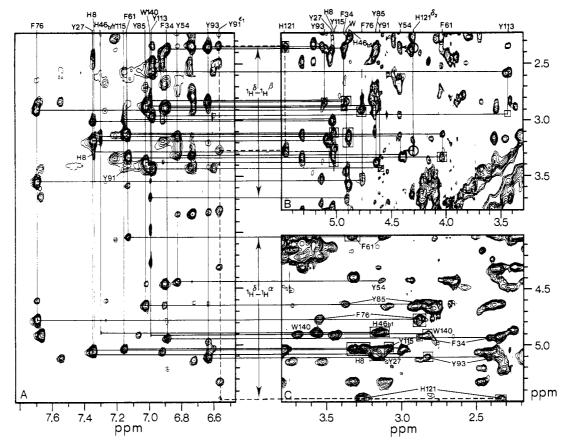


FIGURE 6: Regions of the 500-MHz ¹H{¹H} phase-sensitive NOESY spectrum of H124L-TC in ²H₂O solution. 512 data blocks were recorded with 172 averaged FIDs per t_1 value. The NOE mixing time was 200 ms. The solid lines indicate connectivities between aromatic ring δ -proton resonances and the aliphatic $\alpha\beta\beta'$ spin systems of each aromatic residue. (A) Region showing NOE cross peaks between ${}^{1}H^{\alpha}$ and ${}^{1}H^{\alpha\beta}$ resonances. (B and C) Regions containing NOE connectivities between ${}^{1}H^{\alpha}$ and ${}^{1}H^{\beta}$. The intraresidue NOEs between ${}^{1}H^{\alpha}$ and ${}^{1}H^{\beta}$ protons of each aromatic residues are indicated. The positions of the ${}^{1}H^{\alpha-1}H^{\beta}$ COSY cross peaks from each aromatic residue are boxed.

5A) and ¹H¹³C|SBC-HH (Figure 5B) spectra of [26% U-¹³C]H124L-TC. The Trp connectivity pattern is indicated by dots and dashes in Figure 5B. We were unable to distinguish the indole δ_1 -proton of Trp in the ¹H DQF-COSY (Figure 1A) or HOHAHA (Figure 1B) spectrum. However, the Trp¹H^{\delta_1-13}C^{\delta_1} direct cross peak was assigned readily from ¹H¹³C 2D data (Figure 5).

¹H{¹³C}SBC-NOE relay connectivities linking direct cross peaks from the aromatic and aliphatic portions of each amino acid spin system provided the information needed to match up the two parts. Panels C and D of Figure 2 show ${}^{1}H^{\delta,\epsilon}={}^{13}C^{\alpha,\beta}$ NOE relay cross peaks from the three Phe residues that link assigned ${}^{1}H^{\alpha}-{}^{13}C^{\alpha}$ or ${}^{1}H^{\beta}-{}^{13}C^{\beta}$ direct cross peaks in the aliphatic region to ${}^{1}H^{\delta-13}C^{\delta}$ or ${}^{1}H^{\epsilon-13}C^{\epsilon}$ direct cross peaks in the aromatic region. These provided assignments for Phe³⁴, Phe⁶¹, and Phe⁷⁶ (Figure 5). A fourth Phe spin system, which has lower intensity than the others, was observed only in the ¹H-{13C}SBC spectrum; it has a Hartmann-Hahn connectivity pattern very similar to that of Phe⁶¹ (Figure 5B) and is denoted by "F?" in Figure 5.

Previously assigned ${}^{1}H^{\alpha}={}^{13}C^{\alpha}$ direct cross peaks (Figure 3A) were linked to ${}^{1}H^{\delta,\epsilon}_{-13}C^{\alpha}$ NOE relay cross peaks of Tyr²⁷. Tyr⁵⁴, Tyr⁸⁵, Tyr⁹³, Tyr¹¹³, Tyr¹¹⁵, and Trp¹⁴⁰ (Figure 3F). Figure 3G shows ¹Hδ,ε-13Cβ NOE relay cross peaks assigned to the above six tyrosines. An NOE relay cross peak from the seventh tyrosine, Tyr91, was not observed in Figure 3F,G. However, ¹H{¹H} 2D data provided the missing information.

Figure 6 shows three portions of the ¹H¹H NOESY (²H₂O) spectrum of [na]H124L-TC. The solid lines indicate connectivities from each aromatic ring (${}^{1}H^{\delta}$) to aliphatic protons $({}^{1}H^{\alpha}, {}^{1}H^{\beta}, {}^{1}H^{\beta'})$ of phenylalanines, tyrosines, and tryptophan. All of these connectivities are consistent with those observed in the ¹H{¹³C}SBC-NOE spectrum (Figure 3). Figure 6A shows a weak NOE cross peak at 7.15,3.40 ppm which is assigned to ${}^{1}H^{\delta-1}H^{\beta}$ of Tyr⁹¹. Furthermore, the ${}^{1}H\{{}^{1}H\}$ HOHAHA spectrum (Figure 1B) shows a weak cross peak at 6.58,7.15 ppm that overlaps with the Tyr¹¹⁵ cross peak. This weak cross peak was assigned to ${}^{1}H^{\epsilon-1}H^{\delta}$ of Tyr⁹¹.

The imidazole spin systems of the His residues were identified on the basis of ¹H{¹H} DQF-COSY (Figure 1A), HOHAHA (Figure 1B), and ¹H{¹³C}SBC (Figure 5) data. ¹H¹H NOESY data (Figure 6) established clear NOE connectivities between one ring proton (${}^{1}H^{\delta_{2}}$) and aliphatic protons $({}^{1}H^{\alpha}, {}^{1}H^{\beta}, {}^{1}H^{\beta'})$ of His⁸ and His⁴⁶. Similar cross peaks for His¹²¹ were not observed in the aromatic region. The reason is that the His¹²¹ ¹H^{δ2} resonance is located upfield of water in the aliphatic region. The ¹H{¹³C}SBC spectrum of [26% U-13C]His-H124L-TC (Figure 7B) shows one direct cross peak at 4.32,117.8 ppm which is assigned to ${}^{1}H^{\delta_2-13}C^{\delta_2}$ of His¹²¹. This assignment comes from ¹H{¹³C}MBC data (Figure 7C,D) that show cross peaks at 4.32,130.8 and 4.32,136.4 ppm assigned to ${}^{1}H^{\delta_{2}-13}C^{\gamma,\epsilon_{1}}$ (two and three bond) connectivities. The two circled NOE cross peaks at 4.32 ppm, which link the ${}^{1}H^{\delta_{2}}$ to the ${}^{1}H^{\beta_{1},\beta_{2}}$ of His¹²¹ (Figure 6B), confirm the above assignments. These connectivities, as well as similar ones for His⁸, are seen more clearly in the ¹H¹³C\MBC spectrum (Figure 7C,D) of the selectively labeled complex, [U-13C]-His-H124L-TC. Inexplicably, the ${}^{1}H^{\epsilon_{1}-13}C^{\delta_{2}}$ and ${}^{1}H^{\epsilon_{1}-13}C^{\gamma}$ multiple-bond cross peaks were not observed for His⁴⁶.

Assignment of Nonprotonated Carbons. The quaternary

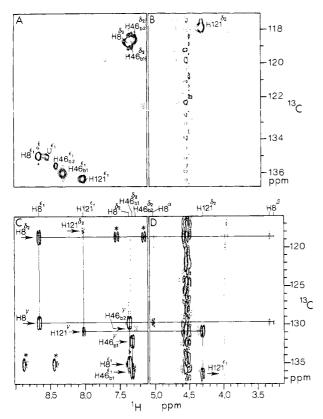


FIGURE 7: Heteronuclear two-dimensional NMR spectra of [26% U- 13 C]His-H124L-TC in 2 H₂O, which provided unambiguous assignments of the His 1 H and 13 C spin systems. (A) 600-MHz 1 H- 13 C|SBC spectrum obtained as 182 data blocks with 248 averaged F1Ds per t_1 value. Direct cross peaks are labeled by the one-letter amino acid code, residue number, and atom type. (B) 500-MHz 1 H 13 C|MBC spectrum obtained as 190 blocks with 256 averaged F1Ds per t_1 value. Multiple-bond cross peaks are labeled by the one-letter amino acid code, residue number, and atom type. Nonsuppressed, undecoupled single-bond correlation cross peaks of His 8 , 1 H $^{e_1-13}$ C e_1 , and 1 H 4 2- 13 C 4 2 are indicated by asterisks. The letter U stands for histidine or unfolded or degraded protein. Data processing was as described above.

carbons of the aromatic residues ($^{13}C^{\gamma}$ from each residue, $^{13}C^{\xi}$ from Tyr, $^{13}C^{\delta_2}$ and $^{13}C^{\epsilon_2}$ from Trp) were identified on the basis of two- and three-bond correlations observed in $^{14}H^{13}C^{\xi}MBC$ spectra. Tyrosine $^{13}C^{\gamma}$ resonances (centered around 129.5 ppm) and Tyr $^{13}C^{\xi}$ resonances (centered around 155.5 ppm) occur in isolated regions. For Tyr, all expected two- and three-bond correlations to $^{13}C^{\xi}$ ($^{1}H^{\delta,\epsilon-13}C^{\xi}$) were resolved, but only the three-bond correlations to $^{13}C^{\gamma}$ ($^{1}H^{\epsilon-13}C^{\gamma}$) were observed (Figure 8). Assignments were obtained for the sidechain quaternary carbons of Tyr 27 , Tyr 54 , Tyr 85 , Tyr 93 , Tyr 113 , Tyr 115 , and Tyr 27 (Figure 8, Table I). The Phe $^{13}C^{\gamma}$ resonances, which also fall in an isolated spectral region, were matched by virtue of $^{1}H^{\epsilon-13}C^{\gamma}$ (three-bond correlation) cross peaks to the assigned $^{1}H^{\epsilon}$ resonances of Phe 34 , Phe 61 , Phe 76 , and Phe 2 (Figure 8, Table I).

The 13 C $^{\gamma}$ of Trp was assigned from the 1 H $^{\delta_{1}}$ $^{-13}$ C $^{\gamma}$ cross peak located at the extreme high-field side of the aromatic 13 C region (Figure 8). The 13 C resonance that showed three-bond coupling with indole protons 1 H $^{\delta_{1}}$, 1 H $^{\xi_{2}}$, and 1 H $^{\xi_{3}}$ was assigned to Trp 140 13 C $^{\delta_{2}}$; the 13 C resonance that showed three-bond coupling with indole protons 1 H $^{\delta_{1}}$, 1 H $^{\epsilon_{3}}$, and 1 H $^{\eta}$ was assigned to Trp 140 13 C $^{\epsilon_{2}}$ (Figure 8).

The His ${}^{13}C^{\gamma}$ resonances are located in a relatively crowded region. A ${}^{1}H^{\delta_2-13}C^{\gamma}$ two-bond correlation cross peak in the spectrum of the uniformly ${}^{13}C$ -labeled complex (Figure 8) identified the quaternary carbon of His⁸, but selective labeling

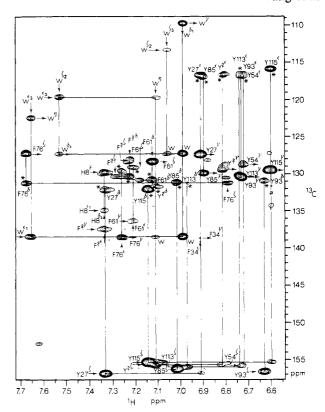


FIGURE 8: 500-MHz two-dimensional ${}^{1}H^{13}C|_{1}MBC$ spectrum of [26% U- ${}^{13}C|_{1}H124L$ -TC recorded selectively for the aromatic resonances. The delay time for suppressing one-bond correlations was 2.78 ms, and the delay time for optimizing two- and three-bond correlations was 70 ms. 372 increments were acquired with 160 averaged FIDs per t_1 value. The spectrum is presented in the mixed mode. Cross peaks are labeled by one-letter amino acid code, residue number [except for peaks from Trp] 40 (labeled W) and the extra, unassigned, Phe (F²) and Tyr (Y²) spin systems], and atom type. Three-bond correlation cross peaks. ${}^{1}H^{c_3,c_5-13}C^{c_5,c_5}$ and ${}^{1}H^{b_2,b_6-13}C^{b_6,b_2}$, of tyrosines and phenylalanines are indicated by asterisks.

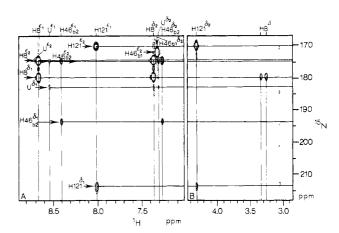


FIGURE 9: Two regions (A and B) of the 600-MHz 1 H 1 SN 1 MBC spectrum of [95% U- 1 SN]H124L-TC in 2 H $_2$ O. Data were recorded selectively for the His region in the 1 SN dimension. 212 blocks were collected with 256 averaged FIDs per t_1 value. The delay time for suppressing single-bond correlations was 5.56 ms. Assigned cross peaks in both spectra are labeled with the one-letter amino acid code, residue number, and atom type. The letter U stands for histidine of unfolded or degraded protein.

was required in order to identify the analogous quaternary carbon signals from His⁴⁶ and His¹²¹ (Figure 7B).

Assignment of Resonances from Histidine Imidazole Nitrogens. The imidazole nitrogen assignments were deduced from ¹H₁¹⁵N₃MBC data, which were acquired with [95%]

U-¹⁵N]H124L-TC in ²H₂O, as extensions of the imidazole ¹H^{δ_1} and ¹H^{ϵ_1} assignments reported above. The His imidazole ¹H $^{\delta_2}$ -¹⁵N $^{\delta_1,\epsilon_2}$, ¹H $^{\epsilon_1}$ -¹⁵N $^{\delta_1,\epsilon_2}$, and ¹H $^{\beta}$ -¹⁵N $^{\delta_1}$ multiple-bond connectivity patterns, shown by solid lines in Figure 9, provided assignments of the ¹⁵N $^{\delta_1}$ and ¹⁵N $^{\epsilon_2}$ of His⁸ and His⁴⁶ in the b2 conformational substate (see below). The His¹²¹ ¹⁵N $^{\delta_1}$ and ¹⁵N $^{\epsilon_2}$ show intraresidue two-bond correlations to ¹H $^{\epsilon_1}$ (Figure 9A) and three- or two-bond correlations, respectively, to ¹H $^{\delta_2}$ (Figure 9B). It is unclear why His⁴⁶ in the b1 conformational substate gave rise to only one resolved multiple-bond ¹H-¹⁵N cross peak: that from the ¹H $^{\delta_2}$ -¹⁵N $^{\epsilon_2}$ (two bond) correlation (Figure 9C). A ¹H 15 N 15 MBC spectrum of [95% U-¹⁵N]-His-H124L-TC in ²H₂O confirmed these results (data not shown).

DISCUSSION

Detection and Characterization of Conformational Substates. Previous studies of conformational heterogeneity in staphylococcal nuclease have relied exclusively on observations of the His imidazole ¹H resonances (Markley et al., 1970; Fox et al., 1986, Evans et al., 1987, 1989; Alexandrescu et al., 1988, 1899; Alexandrescu & Markley, 1989; Wilde et al., 1988). The present results demonstrate that conformational substates also can be detected through ¹³C or ¹⁵N resonance heterogeneity.

A variety of unligated and ligated states of staphylococcal nuclease have been detected by physical techniques. It is useful to consider these in terms of "macroscopic states" and "conformational substates". A macroscopic state is defined as a form having a particular protein-ligand molecular composition and global fold (folded or unfolded). Examples include (1) the unligated nuclease monomer (NM) and dimer (ND), (2) the binary nuclease·Ca²⁺ complex (BC),³ (3) the binary nuclease·pdTp complex (BN), (4) the ternary nuclease·pdTp·Ca²⁺ complex (TC), and (5) unfolded nuclease (U). Conformational heterogeneity detected within these macroscopic states is denoted here by a subscript.⁴ Two kinds of conformational heterogeneity have been characterized so far in the native nuclease monomer:

(1) A conformational equilibrium between two substates (a1 and a2) is linked to pdTp binding. Both the NM_{a1} and NM_{a2} forms bind Ca^{2+} and pdTp, but the association constant is higher for the a1 form so that the TC_{a1} species predominates over the TC_{a2} species (Alexandrescu et al., 1989). Magnetization-transfer experiments (Evans et al., 1987, 1989) have demonstrated single-step equilibria linking each substate of the unligated folded protein and one substate of the unfolded protein. Thus NM_{a1} is linked to U_{a1} and NM_{a2} is linked to U_{a2} . The (a1 = a2) conformational equilibrium leads to doubling of the $^1H^{e_1}$ resonances of His^8 , His^{121} , and His^{124} (Evans et al., 1987, 1989; Alexandrescu et al., 1989) as well as many other resonances throughout the protein molecule (Alexandrescu, 1989; J. Wang, S. N. Loh, and J. L. Markley, unpublished results).

(2) A conformational equilibrium between two other substates (b1 and b2) is not perturbed by complexation with Ca²⁺ or pdTp. This heterogeneity persists in the BC and TC forms. Thus far the (b1 = b2) equilibrium has been observed only

as a doubling of the His spin system (¹H, ¹³C, and ¹⁵N resonances) of His⁴⁶ (see below).

Since two conformational equilibria (a1 = a2 and b1 = b2) are present, the protein actually exists as a mixture of four states: a1b1, a1b2, a2b1, and a2b2. Present results have not provided a way to distinguish the mixed states. The spin system of His⁴⁶ does not discriminate between states a1b1 and a2b1 or between states a1b2 and a2b2, and those spin systems that are responsive to the a1 = a2 equilibrium do not discriminate between states a1b1 and a1b2 or between states a2b1 and a2b2. This suggests that the structural consequences of the two equilibria are localized and to some extent nonoverlapping. Resonances affected by both transitions, should they be found, should map onto the boundary between the two regions of structural change.

Comparison with Previous Assignments. The assignments of the ${}^{1}H^{\epsilon_{1}}$ and ${}^{1}H^{\delta_{2}}$ resonances of His⁸ and His⁴⁶ (b1 and b2) and the ${}^{1}H^{\epsilon_{1}}$ resonance of His¹²¹ determined here by the sequential NMR assignment method are all consistent with those deduced previously for nuclease wt on the basis of mutagenesis (Alexandrescu et al., 1988; Alexandrescu, 1989). The results reported here are in general agreement with the less extensive aromatic residue assignments of Torchia et al. (1989), who identified resonances from only one conformational state of nuclease wt TC at pH 7.4.

Our assignment of the ¹H⁶² resonance of His¹²¹ differs from that reported previously for the unligated (NM) and ternary complex (TC) forms of nuclease wt (Stanczyk et al., 1988). The assignment strategy used by these authors was to deuterate the aromatic ring protons of Tyr, Trp, and Phe but not those of His. Their deuteration procedure did not extend to the aliphatic region where our results show the ¹H^{b₂} resonance of His¹²¹ to be located (4.3 ppm). We have shown that the difference in chemical shift is not explained by the H124L mutation (Hinck et al., 1990). Thus it appears that Stanczyk et al. (1988) misassigned two small resonances around 6.9 ppm in nuclease wt and nuclease wt TC to His¹²¹ ¹H^{\delta_2}. These peaks probably correspond instead (Table I) to residual protonated aromatic residues (e.g., Tyr⁵⁴, Tyr¹¹³, or Phe³⁴). Since the heterogeneity of the peaks around 6.9 ppm was not removed on formation of the ternary complex, the authors claimed that this provided evidence for the existence of a new type of structural heterogeneity in nuclease. We have found, however, that both the ¹H⁶1 and ¹H^δ2 resonances of His¹²¹ report the a1 = a2 conformational equilibrium in nuclease wt and in mutants (Hinck et al., 1990). Thus, as with His⁸ and His¹²⁴ (Alexandrescu, 1989), single signals are observed for the His¹²¹ spin systems (¹H, ¹³C, or ¹⁵N) in the ternary complex. A number of single-site mutations have been found to shift the equilibrium between the al and a2 forms in unligated nuclease (Alexandrescu et al., 1989; Alexandrescu, 1989; Alexandrescu & Markley, 1989). Such mutations were found to alter the a 1/a 2 ratios of both the ${}^{1}H^{\epsilon_{1}}$ and ${}^{1}H^{\delta_{2}}$ resonances of His 121 in a coordinate fashion (Hinck et al., 1990).

The present results reveal a dual spin system for His⁴⁶, which defines conformational substates b1 and b2. The doubled proton peaks are assigned unambiguously to His, since they appear in ¹H{¹³C} spectra of nuclease samples labeled selectively with [¹³C]His (Figure 7; Alexandrescu, 1989) and in a ¹H{¹⁵N} spectrum of a nuclease sample labeled selectively with [¹⁵N]His (data not shown). Sequence-specific assignment of the two peaks to His⁴⁶ is supported by the fact that both peaks are missing in the spectrum of a mutant (H46Y-TC) that lacks His⁴⁶ (Alexandrescu, 1989). The b1/b2 heterogeneity is visible in ¹H{¹³C}SBC (Figure 7A), ¹H{¹³C}MBC (Figure 7C), and ¹H{¹⁵N}MBC (Figure 9A,B) spectra. Dif-

⁴ The following definitions equate previous nomenclature used in this laboratory (Alexandrescu et al., 1988, 1989) with the nomenclature introduced here for conformational substrates (old designation = new designation): $N = NM_{a1}$; $N' = NM_{a2}$; N'' = ND; $U = U_{a1}$; $U^* = U_{a2}$. The new nomenclature is needed in order to describe the increased complexity of conformational heterogeneity identified here.

FIGURE 10: Aromatic region of the 500-MHz 1 H{ 1 H} phase-sensitive NOESY spectrum obtained with H124L-TC in 2 H₂O solution. The figure does not include the His region of the spectrum. The spectrum was acquired as 512 blocks with a mixing time of 150 ms and 132 averaged FIDs per t_1 value. NOE cross peaks are denoted by asterisks. Intraresidue NOE cross peaks are labeled by the one-letter amino acid code and residue number. Interresidue NOE connectivities of aromatic ring protons are indicated by solid lines. The empty rectangular boxes indicate the positions of NOESY cross peaks observed in the left part of this spectrum (denoted by asterisks) and in a spectrum recorded with a longer NOE mixing time (200 ms).

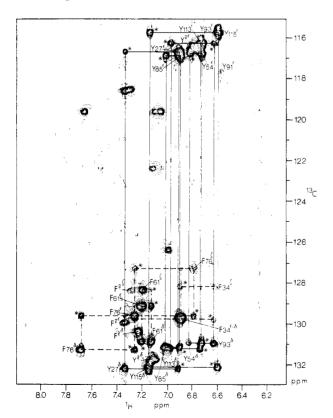


FIGURE 11: 500-MHz 1 H 13 C 1 SBC-NOE spectrum of [26% U- 13 C]H124L-TC in 2 H $_{2}$ O recorded selectively for the aromatic region as 244 increments with 184 averaged FIDs per t_{1} value. The mixing time used for the NOE buildup was 250 ms. Spin system connectivities of tyrosines and phenylalanines are represented respectively by solid or dashed lines. The NOE relay cross peaks are indicated by the one-letter amino acid code and residue number.

ferences in the environment of the His⁴⁶ side chain in the b1 and b2 states affect ¹³C and ¹⁵N chemical shifts as well as ¹H chemical shifts (Table I). In unligated nuclease wt or H124L, the His⁴⁶ ¹H⁴¹ signal appears as a broad singlet at 318 K, but scparate signals from the b1 and b2 states shift apart at lower temperature (S. N. Loh, unpublished data). Doubled His⁴⁶ ¹H⁴¹ peaks are observed in the BC and TC states, but the b1/b2 ratio appears to be unaffected by ligand binding. Doubled His⁴⁶ ¹H⁴¹ peaks also have been observed in spectra of mutant nucleases (A. P. Hinck and S. N. Loh, unpublished data). The lifetimes of the b1 and b2 states are on the order of 25–1000 ms, since magnetization transfer between the two separate His⁴⁶ ¹H⁴¹ peaks has been demonstrated (Alexandrescu, 1989; S. N. Loh, unpublished results).

The data reported here for the ternary complex (H124L-TC) show the presence of extra spin systems for one His (His^U or U), one Phe (Phe[?]), and one Tyr (Tyr[?]) (Figures 1, 5, and 11). The origin of these peaks is under continued investigation. The histidine spin system resembles that of unfolded nuclease (Alexandrescu, 1989), and no intraresidue NOEs were observed for the ring protons assigned to Phe[?] or Tyr[?] (Figures 11 and 10). The resonances may arise from denatured or degraded protein.

Comparison of the Solution and Solid-State Structures. The $^1H_1^1H_1^1$ NOESY (2H_2O) data provide NOE connectivities (dashed lines in Figure 6) that locate the His 121 ring adjacent to the Tyr 91 ring. They link the α - (5.47 ppm), β - (2.35 ppm), β '- (3.28 ppm), and δ_2 -protons (4.3 ppm) of His 121 and an ϵ -proton (6.58 ppm) of Tyr 91 . This result is in agreement with the X-ray structures of the nuclease wt ternary complex, which place the His 121 δ_2 -hydrogen adjacent to the middle of the Tyr 91 ring. Ring-current shift calculations from either the Cotton et al. (1979) or Loll and Lattman (1989) X-ray coordinates

predict an upfield shift of about 3.2 ppm for the His¹²¹ 1 H^{δ_2} from the anisotropy of the Tyr⁹¹ ring. The ring-current effect fully explains the unusual chemical shift observed for this proton. The large (0.93 ppm) chemical shift difference between the two His¹²¹ β -protons results from one of the His¹²¹ β -protons (the *pro-S* 1 H $^{\beta}$) experiencing a larger ring-current shift than the other (the *pro-R* 1 H $^{\beta}$).

Evidence for slow (on the NMR time scale) flipping of the Tyr⁹¹ ring is provided by separate resonances for hydrogens and carbons on either side of the ring. Two peaks observed in the ${}^{1}H\{{}^{13}C\}SBC$ spectrum at (116.6,118.1),6.58 ppm (Figure 5A) are assigned to ${}^{1}H^{\epsilon}_{-}{}^{13}C^{\epsilon}_{-}$ direct cross peaks of Tyr⁹¹. Weak cross peaks observed at 6.58,(7,15,7.46) ppm in ${}^{1}H\{{}^{1}H\}$ HOHAHA (Figure 1B) and NOESY (Figure 10) spectra are assigned to ${}^{1}H^{\epsilon}_{-}({}^{1}H^{\delta_{1}},{}^{1}H^{\delta_{2}})$ of Tyr⁹¹. Our failure to observe the ${}^{1}H^{\delta_{1},\delta_{2}-13}C^{\delta_{1},\delta_{2}}{}^{1}H\{{}^{13}C]SBC$ direct cross peaks may have been a consequence of exchange broadening. Rotation of the Tyr⁹¹ ring may be hindered by the steric proximity of the His¹²¹ ${}^{1}H^{\delta_{2}}$. Similar slow ring flipping of the Tyr⁹¹ ring protons of nuclease wt TC was described by Torchia et al. (1989).

Interresidue NOE cross peaks observed in the aromatic region of the NOESY spectrum (Figure 10) indicate the presence of short contact distances (d < 5 Å) between pairs of ring protons of several aromatic amino acids. NOESY data sets were collected at three different mixing times (100, 150, and 200 ms). A number of these distances were evaluated quantitatively by fitting the initial buildup rate of NOEs according to a procedure described by Fejzo et al. (1989). These distances are compared (Table II) with the corresponding distances derived from the two available X-ray structures of the nuclease wt·pdTp·Ca²⁺ ternary complex. The NMR distances agree within experimental error with those from the more refined structure (Loll & Lattman, 1989) but not with several distances from the less refined structure (Cotton et al., 1979).

ACKNOWLEDGMENTS

We thank Professor Julius Adler for providing auxotrophic E. coli strains, Denise Benway for isolating the ¹³C-labeled amino acids used in this study, Dr. M. Kainosho for providing a sample of ¹⁵N-labeled His, Dr. Christopher L. Kojiro for providing the original ring current calculations, Andrzej M. Krezel for calculating interproton distances and upgrading the ring current calculation program, Jasna Fejzo for assisting with the distance measurements, Drs. Loll and Lattman for providing coordinates of their refined X-ray structure of the nuclease wt ternary complex, and Dr. Dennis A. Torchia for sending copies of his manuscripts prior to publication.

REFERENCES

- Alexandrescu, A. T. (1989) Ph.D. Thesis, University of Wisconsin—Madison.
- Alexandrescu, A. T., & Markley, J. L. (1990) Biochemistry (in press).
- Alexandrescu, A. T., Mills, D. A., Ulrich, E. L., Chinami, M.,

- & Markley, J. L. (1988) Biochemistry 27, 2158-2165.
- Alexandrescu, A. T., Ulrich, E. L., & Markley, J. L. (1989) Biochemistry 28, 204-211.
- Chinami, M., & Shingu, M. (1989) Arch. Biochem. Biophys. 270, 126-136.
- Cohen, J. S., Feil, M., & Chaiken, I. M. (1971) *Biochim. Biophys. Acta 236*, 468-478.
- Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555.
- Cusumano, C. L., Taniuchi, H., & Anfinsen, C. B. (1968) J. Biol. Chem. 243, 4769-4774.
- Evans, P. A., Dobson, C. M., Kautz, R. A., Hatfull, G., & Fox, R. O. (1987) *Nature 329*, 266-268.
- Evans, P. A., Kautz, R. A., Fox, R. O., & Dobson, C. M. (1989) *Biochemistry* 28, 362-370.
- Fejzo, J., Zolnai, Z., Macura, S., & Markley, J. L. (1989) J. Magn. Reson. (in press).
- Fox, R. O., Evans, P. A., & Dobson, C. M. (1986) *Nature* 320, 192-194.
- Grissom, C. B., & Markley, J. L. (1989) Biochemistry 28, 2116-2124.
- Hinck, A. P., Loh, S. N., Wang, J., & Markley, J. L. (1990) Biophys. J. 57, 45a.
- Jardetzky, O., Markley, J. L., Thielmann, H., Arata, Y., & Williams, M. N. (1972) Cold Spring Harbor Symp. Quant. Biol. 36, 257-261.
- Johnson, C. E., & Bovey, F. A. (1958) J. Chem. Phys. 29, 1012-1014.
- Loll, P. J., & Lattman, E. E. (1989) Proteins: Struct., Funct., Genet. 5, 183-201.
- Markley, J. L. (1989) Methods Enzymol. 176, 12-63.
- Markley, J. L., & Jardetzky, O. (1970) J. Mol. Biol. 50, 223-233.
- Markley, J. L., Putter, L., & Jardetzky, O. (1968) Science 161, 1249-1251.
- Markley, J. L., Williams, M. N., & Jardetzky, O. (1970) *Proc. Natl. Acad. Sci. U.S.A.* 65, 645-651.
- Meadows, D. H., Markley, J. L., Cohen, J. S., & Jardetzky, O. (1967) *Proc. Natl. Acad. Sci. U.S.A.* 58, 1307-1313.
- Perkins, S. J. (1982) Biol. Magn. Reson. 4, 193-337. Stanczyk, S. M., Bolton, P. H., Dell'Acqua, M., Pourmotab-
- bed, T., & Gerlt, J. A. (1988) J. Am. Chem. Soc. 110, 7908-7910.
- Taniuchi, H., Anfinsen, C. B., & Sodja, A. (1967) J. Biol. Chem. 242, 4752-4758.
- Torchia, D. A., Sparks, S. W., & Bax, A. (1989a) Biochemistry 28, 5509-5524.
- Torchia, D. A., Sparks, S. W., Young, P. E., & Bax, A. (1989b) J. Am. Chem. Soc. 111, 8315-8317.
- Tucker, P. W., Hazen, E. E., Jr., & Cotton, F. A. (1979) Mol. Cell. Biochem. 23, 3-16.
- Wang, J., LeMaster, D. M., & Markley, J. L. (1990a) Biochemistry 29, 88-101.
- Wang, J., Hinck, A. P., Loh, S. N., & Markley, J. L. (1990b) *Biochemistry* 29, 102-113.
- Wilde, J. A., Bolton, P. H., Dell'Acqua, M., Hibler, B. W., Pourmotabbed, T., & Gerlt, J. A. (1988) *Biochemistry 27*, 4127-4132.